Search results for "Partial algebras of operator"
showing 3 items of 3 documents
CQ *-algebras of measurable operators
2022
Abstract We study, from a quite general point of view, a CQ*-algebra (X, đť–€0) possessing a sufficient family of bounded positive tracial sesquilinear forms. Non-commutative L 2-spaces are shown to constitute examples of a class of CQ*-algebras and any abstract CQ*-algebra (X, đť–€0) possessing a sufficient family of bounded positive tracial sesquilinear forms can be represented as a direct sum of non-commutative L 2-spaces.
Extensions of the Noncommutative Integration
2016
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of pos…
Quasi *-algebras of measurable operators
2009
Non-commutative $L^p$-spaces are shown to constitute examples of a class of Banach quasi *-algebras called CQ*-algebras. For $p\geq 2$ they are also proved to possess a {\em sufficient} family of bounded positive sesquilinear forms satisfying certain invariance properties. CQ *-algebras of measurable operators over a finite von Neumann algebra are also constructed and it is proven that any abstract CQ*-algebra $(\X,\Ao)$ possessing a sufficient family of bounded positive tracial sesquilinear forms can be represented as a CQ*-algebra of this type.